Carbon and fullerene nanomaterials in plant system
نویسندگان
چکیده
Both the functionalized and non functionalized carbon nanomaterials influence fruit and crop production in edible plants and vegetables. The fullerene, C60 and carbon nanotubes have been shown to increase the water retaining capacity, biomass and fruit yield in plants up to ~118% which is a remarkable achievement of nanotechnology in recent years. The fullerene treated bitter melon seeds also increase the phytomedicine contents such as cucurbitacin-B (74%), lycopene (82%), charantin (20%) and insulin (91%). Since as little as 50 μg mL-1 of carbon nanotubes increase the tomato production by about 200%, they may be exploited to enhance the agriculture production in future. It has been observed that, in certain cases, non functionalized multi-wall carbon nanotubes are toxic to both plants and animals but the toxicity can be drastically reduced if they are functionalized.
منابع مشابه
Comment on ‘Carbon and fullerene nanomaterials in plant system’
A recent review article entitled "Carbon and fullerene nanomaterials in plant system" published in this journal, misinterprets a component of our (published) work on the interactions of carbon nanotubes with plants. In this comment, we provide the rationale to counter this misconstruction.
متن کاملToxicity of Pristine and Chemically Functionalized Fullerenes to White Rot Fungus Phanerochaete chrysosporium
Fullerenes are widely produced and applied carbon nanomaterials that require a thorough investigation into their environmental hazards and risks. In this study, we compared the toxicity of pristine fullerene (C60) and carboxylated fullerene (C60-COOH) to white rot fungus Phanerochaete chrysosporium. The influence of fullerene on the weight increase, fibrous structure, ultrastructure, enzyme act...
متن کاملEffects of fullerene (C60), multi-wall carbon nanotubes (MWCNT), single wall carbon nanotubes (SWCNT) and hydroxyl and carboxyl modified single wall carbon nanotubes on riverine microbial communities.
Commercial production of nanoparticles (NP) has created a need for research to support regulation of nanotechnology. In the current study, microbial biofilm communities were developed in rotating annular reactors during continuous exposure to 500 μg L(-1) of each nanomaterial and subjected to multimetric analyses. Scanning transmission X-ray spectromicroscopy (STXM) was used to detect and estim...
متن کاملToxicity evaluations of various carbon nanomaterials.
After the discovery of fullerene and carbon nanotubes, various carbon nanomaterials were discovered or synthesized. The carbon nanomaterials have remarkable properties, different from bulk materials with the same chemical composition, and are therefore useful for industrial applications. However, the toxicity of nanomaterials may also differ from that of the bulk materials; this difference pose...
متن کاملPotential Applications and Antifungal Activities of Engineered Nanomaterials against Gray Mold Disease Agent Botrytis cinerea on Rose Petals
Nanoparticles (NPs) have great potential for use in the fields of biomedicine, building materials, and environmental protection because of their antibacterial properties. However, there are few reports regarding the antifungal activities of NPs on plants. In this study, we evaluated the antifungal roles of NPs against Botrytis cinerea, which is a notorious worldwide fungal pathogen. Three commo...
متن کامل